Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743029

RESUMO

Phlorins have long remained underexplored relative to their fully conjugated counterparts, such as porphyrins, hydroporphyrins, and corroles. Herein, we have attempted to bridge that knowledge gap with a scalar-relativistic density functional theory (DFT) study of unsubstituted iridium and gold phlorin derivatives and a multitechnique experimental study of iridium-bispyridine and gold complexes of 5,5-dimethyl-10,15,20-tris(pentafluorophenyl)phlorin. Theory and experiments concur that the phlorin derivatives exhibit substantially smaller HOMO-LUMO gaps, as reflected in a variety of observable properties. Thus, the experimentally studied Ir and Au complexes absorb strongly in the near-infrared (NIR), with absorption maxima at 806 and 770 nm, respectively. The two complexes are also weakly phosphorescent with emission maxima at 950 and 967 nm, respectively. They were also found to photosensitize singlet oxygen formation, with quantum yields of 40 and 28%, respectively. The near-infrared (NIR) absorption and emission are consonants with smaller electrochemical HOMO-LUMO gaps of ∼1.6 V, compared to values of ∼2.1 V, for electronically innocent porphyrins and corroles. Interestingly, both the first oxidation and reduction potentials of the Ir complex are some 600 mV shifted to more negative potentials relative to those of the Au complex, indicating an exceptionally electron-rich macrocycle in the case of the Ir complex.

2.
J Am Chem Soc ; 146(10): 7097-7104, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412229

RESUMO

High quantum yield and circularly polarized luminescence (CPL) brightness values are reported from Shibasaki-type erbium complexes supported by a perfluorinated Binol ligand (F12Binol). The total fluorination of the ligand circumvents nonradiative quenching from Csp2-H vibrations and leads to quantum yields of up to 11% and CPL brightness values of up to 317 M-1 cm-1 (a 19- and 6-fold increase, respectively, compared to (Binol)3ErNa3). These values are the highest values for any molecular erbium complex to date, making them comparable to Yb emitters. A series of fluorinated Shibasaki-type complexes are synthesized by varying the alkali metal (K, Na, Li) in the secondary coordination sphere, leading to unexpected structural differences. NMR (19F, 7Li) and chiroptical spectroscopy analyses provide insights into their structural geometry. With much improved quantum yields and CPL brightness values, we provide synthetic design principles toward other practical candidates for use in quantum communication technologies.

3.
Chem Sci ; 14(36): 9664-9677, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736633

RESUMO

We report the use of polymer N-heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO-NHC), hydrophobic polystyrene (PS-NHC), and amphiphilic block copolymer (BCP) (PEO-b-PS-NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS-NHC and PEO-b-PS-NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO-NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes.

4.
Inorg Chem ; 62(19): 7483-7490, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37141580

RESUMO

Building on a highly efficient synthesis of pyrrole-appended isocorroles, we have worked out conditions for manganese, palladium, and platinum insertion into free-base 5/10-(2-pyrrolyl)-5,10,15-tris(4-methylphenyl)isocorrole, H2[5/10-(2-py)TpMePiC]. Platinum insertion proved exceedingly challenging but was finally accomplished with cis-Pt(PhCN)2Cl2. All the complexes proved weakly phosphorescent in the near-infrared under ambient conditions, with a maximum phosphorescence quantum yield of 0.1% observed for Pd[5-(2-py)TpMePiC]. The emission maximum was found to exhibit a strong metal ion dependence for the 5-regioisomeric complexes but not for the 10-regioisomers. Despite the low phosphorescence quantum yields, all the complexes were found to sensitize singlet oxygen formation with moderate to good efficiency, with singlet oxygen quantum yields ranging over 21-52%. With significant absorption in the near-infrared and good singlet oxygen-sensitizing ability, metalloisocorroles deserve examination as photosensitizers in the photodynamic therapy of cancer and other diseases.

5.
Chemistry ; 29(36): e202300800, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022110

RESUMO

Strong circularly polarized luminescence (CPL) at 1550 nm is reported for lanthanide complexes supported by Vanol; these are the first examples of coordination of Vanol to lanthanides. A change in the ligand design from a 1,1'-bi-2-naphthol (in Binol) to a 2,2'-bi-1-naphthol (in Vanol) results in significantly improved dissymmetry factors for (Vanol)3 ErNa3 (|glum |=0.64) at 1550 nm. This is among the highest reported dissymmetry factors to date in the telecom C-band region, and among the highest for any lanthanide complexes. Comparative solid-state structural analysis of (Vanol)3 ErNa3 and (Binol)3 ErNa3 suggests that a less distorted geometry around the metal center is in part responsible for the high chiroptical metrics of (Vanol)3 ErNa3 . This phenomenon was further evidenced in the analogous ytterbium complex (Vanol)3 YbNa3 that also exhibit a significantly improved dissymmetry factor (|glum |=0.21). This confirms and generalizes the same observation that was made in other visibly emitting, six-coordinate lanthanide complexes. Due to their strong CPL at 1550 nm, the reported complexes are potential candidates for applications in quantum communication technologies. More importantly, our structure-CPL activity relationship study provides guidance towards the generation of even better near-infrared CPL emitters.

6.
Chem Commun (Camb) ; 59(11): 1485-1488, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36655734

RESUMO

Perovskite materials passivated by chiral ligands have recently shown unique chiroptical activity with promising optoelectronic applications. However, the ligands have been limited to chiral amines. Here, chiral phosphate molecules have been exploited to synthesize CsPbBr3 nanoplatelets. The nanoplatelets showed a distinct circular dichroism signal and maintained their chiroptical properties after purification with anti-solvent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...